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Context	
Deep Learning has found important success in many application fields. It is beginning to be explored for 
scientific computing in domains traditionally dominated by physics models (first principles) like earth 
science, climate science, biological science, etc. It is particularly promising in problems involving processes 
that are not completely understood, or computationally too complex to solve by running the physics 
inspired model.  However, the application of state of the art DNN models often meets limited success in 
scientific applications. This is due to different factors: the complexity of the underlying physical 
phenomenon, the large data requirement of deep neural networks (DNNs), their inability to produce 
physically consistent results.  The research community has started to explore how to integrate physics 
knowledge and data, a challenging direction. We consider here the modeling of complex dynamical 
systems characterizing natural phenomena with a focus on climate modeling applications, and with the 
objective of combining model based physics (MB) and machine learning (ML) approaches.  

Research	directions	

Combining	Physics	and	Deep	Learning	
The integration of physics background and ML has recently motivated the interest of several communities 
(Willard 2020). This issue may been explored from different perspectives. We will focus here on the 
modeling of spatio-temporal dynamics such as those underlying earth science and climate observations. 
The classical modeling tools for such dynamics in physics and applied mathematics rely on partial 
differential  equations (PDE). We then consider situations where the physical prior background is 
provided by PDEs.  We are interested in solving two different problems. A first problem corresponds to 
the situation where the PDEs are too complex to run a full simulation and ones wants to reduce the 
simulation cost. A possible strategy here is to run a simulation at a coarse precision and use ML for 
complementing the physical simulation and reach high fidelity prediction.  The second problem 
corresponds to the case where the PDE only provides partial information about the underlying physical 
phenomena and this physical knowledge it is to be complemented with ML by extracting the 
complementary information from data. Although they correspond to different objectives, the two 
problems share many similarities from a ML point of view. Initial attempts to solve similar problems can 
be found in recent work such as (de Bezenac 2018, Harlim 2020, Yin 2021). This will be further developed 
during the PhD project with the objective of analyzing and developing different integration frameworks. 



Learning	at	Multiple	Scales	
Modeling dynamical physical processes often requires solving PDEs at different spatio-temporal scales. 
For example in climate, global phenomena are influenced by dynamics operating at a smaller scale. Global 
simulation models could not be run, due to their complexity, at fine discretization levels. This problem is 
known as “downscaling” and DNNs could help improve this multiscale problem. Similar problems occur 
e.g. in computational fluid dynamics. Learning at different scales is an open issue in ML. Most current 
DNN deployments for learning dynamics operate at a fixed spatio-temporal discretization. Recent 
advances (Sitzman 2020, Li 2021) allow us learning a function space instead of discrete flows and open the 
possibility for generalizing at different spatio-temporal resolutions. This will be used as starting point for 
learning at different scales with DNNs.  

Uncertainty	Quantification	
Uncertainty quantification is of great importance in climate modeling. This requires characterizing the 
distribution 𝑝 𝑦|𝑥  where 𝑦 is the response and 𝑥 the covariates of interest. Since Monte Carlo 
simulations are unfeasible for such applications, physics has developed solutions such as reduced order 
models for modeling uncertainty while ML often relies on Gaussian Processes for quantifying uncertainty 
in physical processes. However none of these approaches scales well to high dimensions. We will explore 
recent developments based on Neural Processes (Garnelo 2018, Norcliffe 2021) for modeling uncertainty. 

Position	and	Working	Environment	
The PhD studentship is a three year position starting in September/ October 2021. It does not include 
teaching obligation, but it is possible to engage if desired. The PhD candidate will work at Sorbonne 
Université (S.U.), Pierre et Marie Campus in the center of Paris. He/She will integrate the Machine 
Learning and Deep Learning for Information Accesss  team (https://mlia.lip6.fr/) at S.U.  

On the Climate side, the candidate will be co-supervised by M. Levy and S. Thiria from LOCEAN 
laboratory, https://www.locean-ipsl.upmc.fr/ 
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